Molecular Phylogenetics and Molecular Dating of Arecaceae In Bangladesh Inferred from Matk and Rbcl Genes

Author:

Ahmed Sheikh Sunzid,Rahman M Oliur,Ali M Ajmal,Hemaid Fahad Al,Lee Joongku

Abstract

A molecular phylogenetic investigation was undertaken for 30 species belonging to 15 genera of the palm family Arecaceae in Bangladesh to infer evolutionary relationships and molecular dating utilizing plastid-based matK and rbcL genes through multifaceted-algorithm driven approaches with Neighbor-Joining, Maximum-Likelihood, and Bayesian Inference methods. The study revealed that matK has better species discrimination efficiency than rbcL gene due to its highly variable nature. Transition/transversion bias test corroborated this finding as matK showed higher bias (2.632) than rbcL (2.235). Nucleotide substitution patterns were visualized via HYPERMUT program, which unveiled higher variability in matK and lower variability in rbcL alignment. Phylogenetic trees constructed with matK revealed monophyletic nature of origin for all the three subfamilies, viz. Arecoideae, Coryphoideae and Calamoideae, while rbcL trees exhibited polyphyly for Coryphoideae and monophyly for Arecoideae and Calamoideae. All the nine tribes belonging to three subfamilies demonstrated monophyletic nature in matK trees. Bootstrap support and Bayesian posterior probability were found to be higher in matK topologies than that of rbcL. The molecular clock test unraveled an equal evolutionary rate for matK and unequal rate for rbcL sequences. Molecular dating approach unveiled Calamoideae to be the most ancient subfamily (65.75 MYA) among the three subfamilies that originated during the Late Cretaceous period in the Mesozoic era, whereas Coryphoideae and Arecoideae were found to have originated in the Cenozoic era. Bangladesh J. Plant Taxon. 30(2): 213-232, 2023 (December)

Publisher

Bangladesh Academy of Sciences

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3