Ethylene Glycol Regeneration Plan: A Systematic Approach to Troubleshoot the Common Problems

Author:

Haque Md Emdadul

Abstract

Mono Ethylene Glycol (MEG) is used primarily at low-temperature processing plant for extracting natural gas liquids. Typically a physical process plant comprises with gas dehydration system which allows for physical separation of water saturated gas by simple dew point depression and water condensation brought about by chilling from cross exchange with propane refrigerant. The resultant wet gas is prevented from freezing by injection of liquid desiccants to inhibit hydrate formation. The resulting dehydrated gas stream will have a dew point preciously equal to the saturated water volume of the gas at its coolest temperature. Mono Ethylene Glycol has been chosen as hydrate inhibitor because of its low volatility, low toxicity, low flammability, good thermodynamic behavior, and simple proven technology requirement and availability. But it has two common characteristic problems in regeneration plant that is fouling of equipment by iron carbonate, Ca+2/Mg+2 salt deposits and cross contamination of MEG and condensate contamination. MEG in condensate causes condensate specification problems, fouling of condensate stabilization equipment and contamination of wastewater streams. Condensate in MEG causes stripping effect due to condensate vaporization, lower operating temperature, higher MEG purities, and contamination of wastewater streams from MEG Regeneration system and burping of column due to condensate buildup. Another common problem is glycol losses due to carryover with dehydrated gas and which finally accumulates in pipelines and causes corrosion. Other reasons of glycol losses are higher column temperature, foaming, leaks at pump or pipe fittings, operated with excessive gas flow rates and rapid changes in gas flow rates. Column Flooding occurred if feed glycol circulation rate exceeded design limit and it does not allow proper separation of glycol and water separator and much glycol losses through vent line. This paper presents an experimental study of glycol losses. Effort has been made to investigate the causes and the study suggests some mitigation plans. Current study suggests the efficiency of the dehydration process depends on a large extent on the cleanliness of the glycol and the regular monitoring of glycol parameters such as glycol concentration, hydrocarbon content, salt content, solids content, pH stabilization, iron content, foaming tendency etc. Losses due to vaporization from reboiler can be minimized by adjusting operating parameters. By developing monitoring procedure and periodic maintenance about 90% operating problems of Glycol Regeneration Plant can be reduced. DOI: http://dx.doi.org/10.3329/jce.v27i1.15853 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 1, June 2012: 21-26

Publisher

Bangladesh Journals Online (JOL)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3