Prediction of Corrosion Inhibitor Efficiency of Some Aromatic Hydrazides and Schiff Bases Compounds by Using Artificial Neural Network

Author:

Al-Hazam Hanan A.

Abstract

Artificial neural networks are used for evaluating the corrosion inhibitor efficiency of some aromatic hydrazides and Schiff bases compounds. The nodes of neural network input layer represent the quantum parameters, total negative charge (TNC) on molecule, energy of highest occupied molecular orbital (E Homo), energy of lowest unoccupied molecular orbital (E Lomo), dipole moment (μ), total energy (TE), molecular volume (V), dipolar-polarizability factor (Π) and inhibitor  concentration (C). The neural network output is the corrosion inhibitor efficiency (E) for the mentioned compounds. The training and testing of the developed network are based on a database of 31 published experimental tests obtained by weight loss. The neural network predictions for corrosion inhibitor efficiency are more reliable than prediction using other conventional theoretical methods such as AM1, PM3, Mindo, and Mindo-3. Key words: Neural network; Corrosion inhibitor efficiency. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reservedDOI: 10.3329/jsr.v2i1.2757                 J. Sci. Res. 2 (1), 108-113  (2010) 

Publisher

Bangladesh Journals Online (JOL)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3