A finite difference scheme for a fluid dynamic traffic flow model appended with two-point boundary condition

Author:

Gani MO,Hossain MM,Andallah LS

Abstract

A fluid dynamic traffic flow model with a linear velocity-density closure relation is considered. The model reads as a quasi-linear first order hyperbolic partial differential equation (PDE) and in order to incorporate initial and boundary data the PDE is treated as an initial boundary value problem (IBVP). The derivation of a first order explicit finite difference scheme of the IBVP for two-point boundary condition is presented which is analogous to the well known Lax-Friedrichs scheme. The Lax-Friedrichs scheme for our model is not straight-forward to implement and one needs to employ a simultaneous physical constraint and stability condition. Therefore, a mathematical analysis is presented in order to establish the physical constraint and stability condition of the scheme. The finite difference scheme is implemented and the graphical presentation of numerical features of error estimation and rate of convergence is produced. Numerical simulation results verify some well understood qualitative behavior of traffic flow.DOI: http://dx.doi.org/10.3329/ganit.v31i0.10307GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 43-52

Publisher

Bangladesh Journals Online (JOL)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3