Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class Classification

Author:

Brima Yusuf,Kamal Tushar Mosaddek Hossain,Kabir Upama,Islam Tariqul

Abstract

Magnetic Resonance Imaging (MRI) is a principal diagnostic approach used in radiology to create images of a patient’s anatomical and physiological structures. MRI is the prevalent medical imaging practice to find abnormalities in soft tissues. Traditionally they are analyzed by a radiologist to detect abnormalities in soft tissues, especially the brain. However, the process of interpreting a massive volume of a patient's MRI is laborious. Hence, Machine Learning methodologies can aid in detecting abnormalities in soft tissues with considerable accuracy. This research has curated a novel dataset and developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images. This paper adapted the Deep Residual Convolutional Neural Network (ResNet-50) architecture for the experiments and discriminative learning techniques to train the model. Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40% on the curated dataset, 93.80% on the Harvard Whole Brain Atlas 97.05% accuracy on the School of Biomedical Engineering dataset. Our experimental results demonstrate the proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks. DUJASE Vol. 6 (2) 14-29, 2021 (July)

Publisher

Bangladesh Journals Online (JOL)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fine-Tuned EfficientNet B1 Based Deep Transfer Learning Framework for Multiple Types of Brain Disorder Classification;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2024-04-25

2. Transfer Learning-Based Deep Feature Extraction Framework Using Fine-Tuned EfficientNet B7 for Multiclass Brain Tumor Classification;Arabian Journal for Science and Engineering;2023-12-27

3. The Performance of Transferability Metrics Does Not Translate to Medical Tasks;Domain Adaptation and Representation Transfer;2023-10-14

4. Medical images classification using deep learning: a survey;Multimedia Tools and Applications;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3