Affiliation:
1. University of Agriculture, Faisalabad, Faculty of Sciences, Zoology, Wildlife and Fisheries, Faisalabad, Pakistan.
Abstract
With the fast development of industries relevant to nanotechnology, the inappropriate disposal of nanoproducts may initiate a new source of pollution in aquatic ecosystems, thus posing a possible danger to aquatic life. This study evaluated the eco-toxicological effects of waterborne copper oxide nanoparticles (CuO-NPs) having a 32.84nm size and rod shape on a freshwater fish, Labeo rohita. 96-h LC50 of CuO-NPs was 353.98mg/L. Two sub-lethal concentrations equivalent to 1/3rd and 1/5th LC50/96h (70.79 and 117.99 mg/L) of CuO-NPs were selected for 15, 30, and 45-day exposure tests. Bioaccumulation for the 1/3rd 96h LC50 was significantly higher compared to 1/5th of 96-h LC50 of CuO-NPs. There was a sharp decrease in the CAT activity and this decline ultimately increased the TBARS contents. The highest percentage of damaged nuclei and genetic damage index in fish erythrocytes was recorded at the highest concentration and after 45 days of treatment. The adverse effects of CuO-NPs were examined to be dose and duration dependent with increasing extent during all studied time intervals. Summarizing, exposure to sublethal concentrations of CuO-NPs is sufficient to cause alterations in ecotoxicological endpoints such as metal overload, oxidative stress and genotoxicity after chronic exposure.
Publisher
Central Fisheries Research Institute (SUMAE)
Subject
Animal Science and Zoology,Aquatic Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献