Transcription Repressor HANABA TARANU Controls Flower Development by Integrating the Actions of Multiple Hormones, Floral Organ Specification Genes, and GATA3 Family Genes inArabidopsis

Author:

Zhang Xiaolan123,Zhou Yun2,Ding Lian13,Wu Zhigang4,Liu Renyi4,Meyerowitz Elliot M.2

Affiliation:

1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, People's Republic of China

2. Division of Biology, California Institute of Technology, Pasadena, California 91125

3. Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing100193, People's Republic of China

4. Department of Botany and Plant Sciences, University of California, Riverside, California 92521

Abstract

AbstractPlant inflorescence meristems and floral meristems possess specific boundary domains that result in proper floral organ separation and specification. HANABA TARANU (HAN) encodes a boundary-expressed GATA3-type transcription factor that regulates shoot meristem organization and flower development in Arabidopsis thaliana, but the underlying mechanism remains unclear. Through time-course microarray analyses following transient overexpression of HAN, we found that HAN represses hundreds of genes, especially genes involved in hormone responses and floral organ specification. Transient overexpression of HAN also represses the expression of HAN and three other GATA3 family genes, HANL2 (HAN-LIKE 2), GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM-INVOLVED), and GNL (GNC-LIKE), forming a negative regulatory feedback loop. Genetic analysis indicates that HAN and the three GATA3 family genes coordinately regulate floral development, and their expression patterns are partially overlapping. HAN can homodimerize and heterodimerize with the three proteins encoded by these genes, and HAN directly binds to its own promoter and the GNC promoter in vivo. These findings, along with the fact that constitutive overexpression of HAN produces an even stronger phenotype than the loss-of-function mutation, support the hypothesis that HAN functions as a key repressor that regulates floral development via regulatory networks involving genes in the GATA3 family, along with genes involved in hormone action and floral organ specification.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3