Target of Rapamycin Signaling Regulates Metabolism, Growth, and Life Span in Arabidopsis

Author:

Ren Maozhi1,Venglat Prakash1,Qiu Shuqing1,Feng Li1,Cao Yongguo1,Wang Edwin2,Xiang Daoquan1,Wang Jinghe1,Alexander Danny3,Chalivendra Subbaiah4,Logan David5,Mattoo Autar6,Selvaraj Gopalan1,Datla Raju1

Affiliation:

1. Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada

2. Computational Chemistry and Bioinformatics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada

3. Metabolon, Durham, North Carolina 27713

4. Valent BioSciences Corporation, Long Grove, Illinois 60047

5. Université d’Angers, Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, LUNAM Université, Angers cedex 1, France

6. Sustainable Agricultural Systems Laboratory, U.S. Department of Agriculture–Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, Maryland 20705-2350

Abstract

Abstract Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3