Affiliation:
1. Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
Abstract
AbstractPlasma membrane proteins internalized by endocytosis and targeted for degradation are sorted into lumenal vesicles of multivesicular bodies (MVBs) by the endosomal sorting complexes required for transport (ESCRT) machinery. Here, we show that the Arabidopsis thaliana ESCRT-related CHARGED MULTIVESICULAR BODY PROTEIN/CHROMATIN MODIFYING PROTEIN1A (CHMP1A) and CHMP1B proteins are essential for embryo and seedling development. Double homozygous chmp1a chmp1b mutant embryos showed limited polar differentiation and failed to establish bilateral symmetry. Mutant seedlings show disorganized apical meristems and rudimentary true leaves with clustered stomata and abnormal vein patterns. Mutant embryos failed to establish normal auxin gradients. Three proteins involved in auxin transport, PINFORMED1 (PIN1), PIN2, and AUXIN-RESISTANT1 (AUX1) mislocalized to the vacuolar membrane of the mutant. PIN1 was detected in MVB lumenal vesicles of control cells but remained in the limiting membrane of chmp1a chmp1b MVBs. The chmp1a chmp1b mutant forms significantly fewer MVB lumenal vesicles than the wild type. Furthermore, CHMP1A interacts in vitro with the ESCRT-related proteins At SKD1 and At LIP5. Thus, Arabidopsis CHMP1A and B are ESCRT-related proteins with conserved endosomal functions, and the auxin carriers PIN1, PIN2, and AUX1 are ESCRT cargo proteins in the MVB sorting pathway.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science
Cited by
184 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献