LZF1/SALT TOLERANCE HOMOLOG3, anArabidopsisB-Box Protein Involved in Light-Dependent Development and Gene Expression, Undergoes COP1-Mediated Ubiquitination

Author:

Datta Sourav1,Johansson Henrik2,Hettiarachchi Chamari1,Irigoyen María Luisa3,Desai Mintu1,Rubio Vicente3,Holm Magnus2

Affiliation:

1. Department of Cell and Molecular Biology, Gothenburg University, 405 30 Gothenburg, Sweden

2. Department of Plant and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden

3. Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain

Abstract

AbstractB-box containing proteins play an important role in light signaling in plants. Here, we identify LIGHT-REGULATED ZINC FINGER1/SALT TOLERANCE HOMOLOG3 (STH3), a B-box encoding gene that genetically interacts with two key regulators of light signaling, ELONGATED HYPOCOTYL5 (HY5) and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). STH3 physically interacts with HY5 in vivo and shows a COP1-dependent localization to nuclear speckles when coexpressed with COP1 in plant cells. A T-DNA insertion mutant, sth3, is hyposensitive to high fluence blue, red, and far-red light and has elongated hypocotyls under short days. Analyses of double mutants between sth3, sth2, and hy5 suggest that they have partially overlapping functions. Interestingly, functional assays in protoplasts suggest that STH3 can activate transcription both independently and together with STH2 through the G-box promoter element. Furthermore, sth3 suppresses the cop1 hypocotyl phenotype in the dark as well as the anthocyanin accumulation in the light. Finally, COP1 ubiquitinates STH3 in vitro, suggesting that STH3 is regulated by COP1. In conclusion, we have identified STH3 as a positive regulator of photomorphogenesis acting in concert with STH2 and HY5, while also being a target of COP1-mediated ubiquitination.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3