discordia1 and alternative discordia1 Function Redundantly at the Cortical Division Site to Promote Preprophase Band Formation and Orient Division Planes in Maize

Author:

Wright Amanda J.1,Gallagher Kimberly,Smith Laurie G.1

Affiliation:

1. Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0116

Abstract

AbstractIn plants, cell wall placement during cytokinesis is determined by the position of the preprophase band (PPB) and the subsequent expansion of the phragmoplast, which deposits the new cell wall, to the cortical division site delineated by the PPB. New cell walls are often incorrectly oriented during asymmetric cell divisions in the leaf epidermis of maize (Zea mays) discordia1 (dcd1) mutants, and this defect is associated with aberrant PPB formation in asymmetrically dividing cells. dcd1 was cloned and encodes a putative B'' regulatory subunit of the PP2A phosphatase complex highly similar to Arabidopsis thaliana FASS/TONNEAU2, which is required for PPB formation. We also identified alternative discordia1 (add1), a second gene in maize nearly identical to dcd1. While loss of add1 function does not produce a noticeable phenotype, knock down of both genes in add1(RNAi) dcd1(RNAi) plants prevents PPB formation and causes misorientation of symmetric and asymmetric cell divisions. Immunolocalization studies with an antibody that recognizes both DCD1 and ADD1 showed that these proteins colocalize with PPBs and remain at the cortical division site through metaphase. Our results indicate that DCD1 and ADD1 function in PPB formation, that this function is more critical in asymmetrically dividing cells than in symmetrically dividing cells, and that DCD1/ADD1 may have other roles in addition to promoting PPB formation at the cortical division site.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3