TCP Transcription Factors Control the Morphology of Shoot Lateral Organs via Negative Regulation of the Expression of Boundary-Specific Genes inArabidopsis

Author:

Koyama Tomotsugu12,Furutani Masahiko3,Tasaka Masao3,Ohme-Takagi Masaru12

Affiliation:

1. Research Institute of Genome-Based Biofactory, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan

2. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan

3. Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara 630-0101, Japan

Abstract

AbstractPlants form shoot meristems in the so-called boundary region, and these meristems are necessary for normal morphogenesis of aerial parts of plants. However, the molecular mechanisms that regulate the formation of shoot meristems are not fully understood. We report here that expression of a chimeric repressor from TCP3 (TCP3SRDX), a member of TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factors in Arabidopsis thaliana, resulted in the formation of ectopic shoots on cotyledons and various defects in organ development. Expression of TCP3SRDX induced ectopic expression of boundary-specific genes, namely the CUP-SHAPED COTYLEDON (CUC) genes, and suppressed the expression of miR164, whose product cleaves the transcripts of CUC genes. This abnormal phenotype was substantially reversed on the cuc1 mutant background. By contrast, gain of function of TCP3 suppressed the expression of CUC genes and resulted in the fusion of cotyledons and defects in formation of shoots. The pattern of expression of TCP3 did not overlap with that of the CUC genes. In addition, we found that eight TCPs had functions similar to that of TCP3. Our results demonstrate that the TCP transcription factors play a pivotal role in the control of morphogenesis of shoot organs by negatively regulating the expression of boundary-specific genes.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3