Affiliation:
1. Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
Abstract
AbstractAnimal-mediated pollination is essential in plant reproductive biology and is often associated with pollination syndromes, sets of floral traits, such as color, scent, shape, or nectar content. Selection by pollinators is often considered a key factor in floral evolution and plant speciation. Our aim is the identification and characterization of the genetic changes that caused the evolution of divergent pollination syndromes in closely related plant species. We focus on ANTHOCYANIN2 (AN2), a well-defined myb-type transcription factor that is a major determinant of flower color variation between Petunia integrifolia and Petunia axillaris. Analysis of sequence variation in AN2 in wild P. axillaris accessions showed that loss-of-function alleles arose at least five times independently. DNA sequence analysis was complemented by functional assays for pollinator preference using genetic introgressions and transgenics. These results show that AN2 is a major determinant of pollinator attraction. Therefore, changes in a single gene cause a major shift in pollination biology and support the notion that the adaptation of a flowering plant to a new pollinator type may involve a limited number of genes of large effect. Gene identification and analysis of molecular evolution in combination with behavioral and ecological studies can ultimately unravel the evolutionary genetics of pollination syndromes.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science
Cited by
301 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献