Perturbation of Indole-3-Butyric Acid Homeostasis by the UDP-GlucosyltransferaseUGT74E2ModulatesArabidopsisArchitecture and Water Stress Tolerance

Author:

Tognetti Vanesa B.12,Van Aken Olivier123,Morreel Kris12,Vandenbroucke Korneel12,van de Cotte Brigitte12,De Clercq Inge12,Chiwocha Sheila3,Fenske Ricarda3,Prinsen Els4,Boerjan Wout12,Genty Bernard5,Stubbs Keith A.6,Inzé Dirk12,Van Breusegem Frank12

Affiliation:

1. Department of Plant Systems Biology, VIB, Ghent University, 9052 Gent, Belgium

2. Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium

3. ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth 6009, Australia

4. Departement Biologie, Universiteit Antwerpen, 2020 Antwerpen, Belgium

5. Centre d'Etudes Atomiques, Centre National de la Recherche Scientifique, Université Aix-Marseille, Unité Mixte de Recherche 6191 Biologie Végétale et Microbiologie Environnementale, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint Paul lez Durance, France

6. School of Biomedical, Biomolecular, and Chemical Sciences, University of Western Australia, Perth 6009, Australia

Abstract

AbstractReactive oxygen species and redox signaling undergo synergistic and antagonistic interactions with phytohormones to regulate protective responses of plants against biotic and abiotic stresses. However, molecular insight into the nature of this crosstalk remains scarce. We demonstrate that the hydrogen peroxide–responsive UDP-glucosyltransferase UGT74E2 of Arabidopsis thaliana is involved in the modulation of plant architecture and water stress response through its activity toward the auxin indole-3-butyric acid (IBA). Biochemical characterization of recombinant UGT74E2 demonstrated that it strongly favors IBA as a substrate. Assessment of indole-3-acetic acid (IAA), IBA, and their conjugates in transgenic plants ectopically expressing UGT74E2 indicated that the catalytic specificity was maintained in planta. In these transgenic plants, not only were IBA-Glc concentrations increased, but also free IBA levels were elevated and the conjugated IAA pattern was modified. This perturbed IBA and IAA homeostasis was associated with architectural changes, including increased shoot branching and altered rosette shape, and resulted in significantly improved survival during drought and salt stress treatments. Hence, our results reveal that IBA and IBA-Glc are important regulators of morphological and physiological stress adaptation mechanisms and provide molecular evidence for the interplay between hydrogen peroxide and auxin homeostasis through the action of an IBA UGT.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3