Affiliation:
1. Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
2. Life Science Group, Chuden CTI Co., Nagoya 450-0003, Japan
Abstract
AbstractPlastid DNA fragments are often found in the plant nuclear genome, and DNA transfer from plastids to the nucleus is ongoing. However, successful gene transfer is rare. What happens to compensate for this? To address this question, we analyzed nuclear-localized plastid DNA (nupDNA) fragments throughout the rice (Oryza sativa ssp japonica) genome, with respect to their age, size, structure, and integration sites on chromosomes. The divergence of nupDNA sequences from the sequence of the present plastid genome strongly suggests that plastid DNA has been transferred repeatedly to the nucleus in rice. Age distribution profiles of the nupDNA population, together with the size and structural characteristics of each fragment, revealed that once plastid DNAs are integrated into the nuclear genome, they are rapidly fragmented and vigorously shuffled, and surprisingly, 80% of them are eliminated from the nuclear genome within a million years. Large nupDNA fragments preferentially localize to the pericentromeric region of the chromosomes, where integration and elimination frequencies are markedly higher. These data indicate that the plant nuclear genome is in equilibrium between frequent integration and rapid elimination of the chloroplast genome and that the pericentromeric regions play a significant role in facilitating the chloroplast–nuclear DNA flux.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science
Cited by
148 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献