Three-Dimensional Organization of Higher-Plant Chloroplast Thylakoid Membranes Revealed by Electron Tomography

Author:

Shimoni Eyal1,Rav-Hon Ophir2,Ohad Itzhak3,Brumfeld Vlad4,Reich Ziv2

Affiliation:

1. Electron Microscopy Unit  Weizmann Institute of Science  Rehovot 76100  Israel

2. Department of Biological Chemistry  Weizmann Institute of Science  Rehovot 76100  Israel

3. Department of Biological Chemistry  Hebrew University of Jerusalem  Jerusalem 91904  Israel

4. Department of Plant Sciences  Weizmann Institute of Science  Rehovot 76100  Israel

Abstract

AbstractThe light-harvesting and energy-transducing functions of the chloroplast are performed within an intricate lamellar system of membranes, called thylakoid membranes, which are differentiated into granum and stroma lamellar domains. Using dual-axis electron microscope tomography, we determined the three-dimensional organization of the chloroplast thylakoid membranes within cryo-immobilized, freeze-substituted lettuce (Lactuca sativa) leaves. We found that the grana are built of repeating units that consist of paired layers formed by bifurcations of stroma lamellar sheets, which fuse within the granum body. These units are rotated relative to each other around the axis of the granum cylinder. One of the layers that makes up the pair bends upwards at its edge and fuses with the layer above it, whereas the other layer bends in the opposite direction and merges with the layer below. As a result, each unit in the granum is directly connected to its neighbors as well as to the surrounding stroma lamellae. This highly connected morphology has important consequences for the formation and function of the thylakoid membranes as well as for their stacking/unstacking response to variations in light conditions.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3