Pigment Deficiency in Nightshade/Tobacco Cybrids Is Caused by the Failure to Edit the Plastid ATPase α-Subunit mRNA

Author:

Schmitz-Linneweber Christian1,Kushnir Sergei2,Babiychuk Elena2,Poltnigg Peter1,Herrmann Reinhold G.1,Maier Rainer M.1

Affiliation:

1. Department für Biologie I der Ludwig-Maximilians-Universität München, Botanik, D-80638 Munich, Germany

2. Department of Plant Systems Biology, Ghent University/Vlaams Interuniversitair Instituut voor Biotechnologie, B-9052 Gent, Belgium

Abstract

AbstractThe subgenomes of the plant cell, the nuclear genome, the plastome, and the chondriome are known to interact through various types of coevolving macromolecules. The combination of the organellar genome from one species with the nuclear genome of another species often leads to plants with deleterious phenotypes, demonstrating that plant subgenomes coevolve. The molecular mechanisms behind this nuclear–organellar incompatibility have been elusive, even though the phenomenon is widespread and has been known for >70 years. Here, we show by direct and reverse genetic approaches that the albino phenotype of a flowering plant with the nuclear genome of Atropa belladonna (deadly nightshade) and the plastome of Nicotiana tabacum (tobacco) develops as a result of a defect in RNA editing of a tobacco-specific editing site in the plastid ATPase α-subunit transcript. A plastome-wide analysis of RNA editing in these cytoplasmic hybrids and in plants with a tobacco nucleus and nightshade chloroplasts revealed additional defects in the editing of species-specific editing sites, suggesting that differences in RNA editing patterns in general contribute to the pigment deficiencies observed in interspecific nuclear–plastidial incompatibilities.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3