Interaction between Rice MYBGA and the Gibberellin Response Element Controls Tissue-Specific Sugar Sensitivity of α-Amylase Genes

Author:

Chen Peng-Wen1,Chiang Chih-Ming1,Tseng Tung-Hi2,Yu Su-May13

Affiliation:

1. Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Republic of China

2. Taiwan Agriculture Research Institute, Wu-Fong, Taichung, Taiwan 413, Republic of China

3. Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 402, Republic of China

Abstract

Abstract Expression of α-amylase genes during cereal grain germination and seedling growth is regulated negatively by sugar in embryos and positively by gibberellin (GA) in endosperm through the sugar response complex (SRC) and the GA response complex (GARC), respectively. We analyzed two α-amylase promoters, αAmy3 containing only SRC and αAmy8 containing overlapped SRC and GARC. αAmy3 was sugar-sensitive but GA-nonresponsive in both rice (Oryza sativa) embryos and endosperms, whereas αAmy8 was sugar-sensitive in embryos and GA-responsive in endosperms. Mutation of the GA response element (GARE) in the αAmy8 promoter impaired its GA response but enhanced sugar sensitivity, and insertion of GARE in the αAmy3 promoter rendered it GA-responsive but sugar-insensitive in endosperms. Expression of the GARE-interacting transcription factor MYBGA was induced by GA in endosperms, correlating with the endosperm-specific αAmy8 GA response. αAmy8 became sugar-sensitive in MYBGA knockout mutant endosperms, suggesting that the MYBGA–GARE interaction overrides the sugar sensitivity of αAmy8. In embryos overexpressing MYBGA, αAmy8 became sugar-insensitive, indicating that MYBGA affects sugar repression. α-Amylase promoters active in endosperms contain GARE, whereas those active in embryos may or may not contain GARE, confirming that the GARE and GA-induced MYBGA interaction prevents sugar feedback repression of endosperm α-amylase genes. We demonstrate that the MYBGA–GARE interaction affects sugar feedback control in balanced energy production during seedling growth and provide insight into the control mechanisms of tissue-specific regulation of α-amylase expression by sugar and GA signaling interference.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3