High-Resolution Single-Copy Gene Fluorescence in Situ Hybridization and Its Use in the Construction of a Cytogenetic Map of Maize Chromosome 9

Author:

Wang Chung-Ju Rachel1,Harper Lisa1,Cande W. Zacheus1

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, California 94720

Abstract

AbstractHigh-resolution cytogenetic maps provide important biological information on genome organization and function, as they correlate genetic distance with cytological structures, and are an invaluable complement to physical sequence data. The most direct way to generate a cytogenetic map is to localize genetically mapped genes onto chromosomes by fluorescence in situ hybridization (FISH). Detection of single-copy genes on plant chromosomes has been difficult. In this study, we developed a squash FISH procedure allowing successful detection of single-copy genes on maize (Zea mays) pachytene chromosomes. Using this method, the shortest probe that can be detected is 3.1 kb, and two sequences separated by ∼100 kb can be resolved. To show the robust nature of this protocol, we localized nine genetically mapped single-copy genes on chromosome 9 in one FISH experiment. Integration of existing information from genetic maps and the BAC contig-based physical map with the cytological structure of chromosome 9 provides a comprehensive cross-referenced cytogenetic map and shows the dramatic reduction of recombination in the pericentromeric heterochromatic region. To establish a feasible mapping system for maize, we also developed a probe cocktail for unambiguous identification of the 10 maize pachytene chromosomes. These results provide a starting point toward constructing a high-resolution integrated cytogenetic map of maize.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3