Hierarchical Nuclear and Cytoplasmic Genetic Architectures for Plant Growth and Defense within Arabidopsis

Author:

Joseph Bindu1,Corwin Jason A.1,Züst Tobias2,Li Baohua1,Iravani Majid3,Schaepman-Strub Gabriela2,Turnbull Lindsay A.2,Kliebenstein Daniel J.1

Affiliation:

1. Department of Plant Sciences, University of California at Davis, Davis, California 95616

2. Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich CH-8057, Switzerland

3. Department of Natural Resources, Isfahan University of Technology, 83111-84156 Isfahan, Iran

Abstract

Abstract To understand how genetic architecture translates between phenotypic levels, we mapped the genetic architecture of growth and defense within the Arabidopsis thaliana Kas × Tsu recombinant inbred line population. We measured plant growth using traditional size measurements and size-corrected growth rates. This population contains genetic variation in both the nuclear and cytoplasmic genomes, allowing us to separate their contributions. The cytoplasmic genome regulated a significant variance in growth but not defense, which was due to cytonuclear epistasis. Furthermore, growth adhered to an infinitesimal model of genetic architecture, while defense metabolism was more of a moderate-effect model. We found a lack of concordance between quantitative trait loci (QTL) regulating defense and those regulating growth. Given the published evidence proving the link between glucosinolates and growth, this is likely a false negative result caused by the limited population size. This size limitation creates an inability to test the entire potential genetic landscape possible between these two parents. We uncovered a significant effect of glucosinolates on growth once we accounted for allelic differences in growth QTLs. Therefore, other growth QTLs can mask the effects of defense upon growth. Investigating direct links across phenotypic hierarchies is fraught with difficulty; we identify issues complicating this analysis.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3