Cotton leaf curl Multan virus βC1 Protein Induces Autophagy by Disrupting the Interaction of Autophagy-Related Protein 3 with Glyceraldehyde-3-Phosphate Dehydrogenases[OPEN]

Author:

Ismayil Asigul1,Yang Meng1,Haxim Yakupjan1,Wang Yunjing1,Li Jinlin1,Han Lu1,Wang Yan1,Zheng Xiyin1,Wei Xiang1,Nagalakshmi Ugrappa2,Hong Yiguo3,Hanley-Bowdoin Linda4,Liu Yule1

Affiliation:

1. MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China

2. Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California at Davis, California 95616

3. Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 310036 Hangzhou, China

4. Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695

Abstract

Abstract Autophagy plays an important role in plant–pathogen interactions. Several pathogens including viruses induce autophagy in plants, but the underpinning mechanism remains largely unclear. Furthermore, in virus–plant interactions, viral factor(s) that induce autophagy have yet to be identified. Here, we report that the βC1 protein of Cotton leaf curl Multan betasatellite (CLCuMuB) interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a negative autophagic regulator, to induce autophagy in Nicotiana benthamiana. CLCuMuB βC1 bound to GAPCs and disrupted the interaction between GAPCs and autophagy-related protein 3 (ATG3). A mutant βC1 protein (βC13A) in which I45, Y48, and I53 were all substituted with Ala (A), had a dramatically reduced binding capacity with GAPCs, failed to disrupt the GAPCs-ATG3 interactions and failed to induce autophagy. Furthermore, mutant virus carrying βC13A showed increased symptoms and viral DNA accumulation associated with decreased autophagy in plants. These results suggest that CLCuMuB βC1 activates autophagy by disrupting GAPCs–ATG3 interactions.

Funder

Chinese Ministry of Science and Technology | Department of S and T for Social Development

National Natural Science Foundation of China (NSFC

National Transgenic Program of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3