Affiliation:
1. Institute of Molecular Agrobiology, National University of Singapore, 1 Research Link, Singapore 117604
Abstract
AbstractWe have generated Dissociation (Ds) element insertions throughout the Arabidopsis genome as a means of random mutagenesis. Here, we present the molecular analysis of genomic sequences that flank the Ds insertions of 931 independent transposant lines. Flanking sequences from 511 lines proved to be identical or homologous to DNA or protein sequences in public databases, and disruptions within known or putative genes were indicated for 354 lines. Because a significant portion (45%) of the insertions occurred within sequences defined by GenBank BAC and P1 clones, we were able to assess the distribution of Ds insertions throughout the genome. We discovered a significant preference for Ds transposition to the regions adjacent to nucleolus organizer regions on chromosomes 2 and 4. Otherwise, the mapped insertions appeared to be evenly dispersed throughout the genome. For any given gene, insertions preferentially occurred at the 5′ end, although disruption was clearly possible at any intragenic position. The insertion sites of >500 lines that could be characterized by reference to public databases are presented in a tabular format at http://www.plantcell.org/cgi/content/full/11/12/2263/DC1. This database should be of value to researchers using reverse genetics approaches to determine gene function.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science
Cited by
266 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献