Tissue-Specific Gene Silencing Mediated by a Naturally Occurring Chalcone Synthase Gene Cluster in Glycine max  [W]

Author:

Tuteja Jigyasa H.12,Clough Steven J.2,Chan Wan-Ching2,Vodkin Lila O.2

Affiliation:

1. Program in Physiological and Molecular Plant Biology, University of Illinois, Urbana, Illinois 61801

2. Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801

Abstract

Abstract Chalcone synthase, a key regulatory enzyme in the flavonoid pathway, constitutes an eight-member gene family in Glycine max (soybean). Three of the chalcone synthase (CHS) gene family members are arranged as inverted repeats in a 10-kb region, corresponding to the I locus (inhibitor). Spontaneous mutations of a dominant allele (I or ii) to a recessive allele (i) have been shown to delete promoter sequences, paradoxically increasing total CHS transcript levels and resulting in black seed coats. However, it is not known which of the gene family members contribute toward pigmentation and how this locus affects CHS expression in other tissues. We investigated the unusual nature of the I locus using four pairs of isogenic lines differing with respect to alleles of the I locus. RNA gel blots using a generic open reading frame CHS probe detected similar CHS transcript levels in stems, roots, leaves, young pods, and cotyledons of the yellow and black isolines but not in the seed coats, which is consistent with the dominant I and ii alleles mediating CHS gene silencing in a tissue-specific manner. Using real-time RT-PCR, a variable pattern of expression of CHS genes in different tissues was demonstrated. However, increase in pigmentation in the black seed coats was associated with release of the silencing effect specifically on CHS7/CHS8, which occurred at all stages of seed coat development. These expression changes were linked to structural changes taking place at the I locus, shown to encompass a much wider region of at least 27 kb, comprising two identical 10.91-kb stretches of CHS gene duplications. The suppressive effect of this 27-kb I locus in a specific tissue of the G. max plant represents a unique endogenous gene silencing mechanism.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3