Terrain Variables Based Spatial Mapping of Soil Properties in a Watershed of Himalayan Landscape Using Random Forest Model

Author:

Kalambukattu Justin George1ORCID,Kumar Suresh1ORCID

Affiliation:

1. Agriculture and Soils Department, Indian Institute of Remote Sensing, Dehra Dun -248001, Uttarakhand, India.

Abstract

Soil information, including their spatial variability is vital for devising various soil and land management policies and strategies as well as assessing the environmental impact of different land use changes. Among the various soil forming factors, terrain plays a vital role in determining the spatial distribution of soil properties especially in hilly terrains due to its impact on soil processes as well as the redistribution of soil materials. The study was carried out for assessing the applicability and efficiency of various terrain parameters for prediction as well as spatial mapping of different soil properties using Random Forest (RF) modeling approach, in a mid-Himalayan watershed located in Tehri Garhwal district, Uttarakhand. Field data collection was done by collecting soil samples from 0-15cm depth (surface layer) at 68 different locations in the study area, following a transect survey method. Collected samples were pre-processed and analyzed in the laboratory for estimating various soil properties such as sand, silt and clay contents as well as soil nutrients such as Soil Organic Carbon (SOC) and nitrogen (N). Fifteen terrain parameters derived by digital terrain analysis of CartoDEM of 10m spatial resolution were used as predictor variables during RF modeling. Pearson correlation analysis revealed poor linear relationship of soil properties with various terrain parameters. Variable importance ranking revealed that compound topographic index, elevation, heat load index, integrated moisture index and mean curvature are the most important variables, explaining maximum variability in different properties. The performance of RF models for predicting various soil properties were evaluated based on the coefficient of determination (R2), Root Mean Square Error (RMSE) as well as Lin’s Concordance Correlation Coefficient (CCC). The models were found to perform well with R2 and CCC values of 0.47 and 0.50 for sand, 0.52 and 0.55 for silt, 0.44 and 0.57 for clay, 0.41 and 0.36 for organic carbon and 0.55 and 0.34 for nitrogen, respectively. The validated models were further employed for generating the spatial distribution maps of various soil properties. Such attempts combining various environmental variables with machine learning based models may aid us in mapping the spatial distribution of various soil properties in the hilly mountainous terrains with considerable accuracies.

Publisher

Gatha Cognition

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital soil mapping using geospatial data and machine learning techniques;Intelligence Systems for Earth, Environmental and Planetary Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3