Comparative Genome Analysis of Lactiplantibacillus paraplantarum

Author:

Benk Ruveyda1ORCID,Ortakcı Fatih1ORCID

Affiliation:

1. ABDULLAH GUL UNIVERSITY

Abstract

Lactiplantibacillus paraplantarum is a lactic acid bacteria species that is associated with food microbiomes and has been found to be either detrimental or beneficial against specific food processes. To augment our genomic understanding of L.paraplantarum and uncover metabolic differences and lifestyle adaptations between strains (DSM10667, L-ZS9, AS-7) to better utilize these species in food bioprocesses. In-silico genomic approach applied using JGI’s IMG/MER, and PATRIC to compare DSM10667, L-ZS9 and AS-7 genomes. Bacteriocin and prophage screenings were performed using Bagel4 and PHASTER software respectively. BRIG was used to identify alignments of strains to each other for visual inspection of each genome. KEGG was used to predict putative carbohydrate, pyruvate, and amino-acid metabolisms. Genome sizes of DSM10667, L-ZS9, and AS-7 were 3.36, 3.14 and 3.01 M bp, respectively. Unique genes were found to predict evolutionary adaptation of strains against their corresponding micro-niche. For example, the gene encoding arginase was only found in sausage isolate L-ZS9 while dextran-sucrase encoding gene was unique to beer contaminant DSM10667. All three strains predicted to carry plnAEFJ operon for plantaricin biosynthesis and AS-7 genome contains leucocin K. Although DSM 10667 harbors four intact prophages, both L-ZS9 and AS-7 carried one prophage region still showing the plasticity of the genome. Genome analysis predicted isolation sources might potentially affect the metabolic capabilities of strains part of adaptation of the strains to their habitats. Our findings put forth new insights into the genomics of L.paraplantarum for future studies and uncovering potential strain manipulation elements for better use in commercial processing environment.

Publisher

Bitlis Eren Universitesi Fen Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3