Comparison of Ensemble and Base Learner Algorithms for the Prediction of Machining Induced Residual Stresses in Turning of Aerospace Materials

Author:

BUYRUKOĞLU Selim1,KESRİKLİOĞLU Sinan2

Affiliation:

1. CANKIRI KARATEKIN UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF COMPUTER ENGINEERING, DEPARTMENT OF COMPUTER SCIENCES

2. ABDULLAH GUL UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF MECHANICAL ENGINEERING

Abstract

Estimation of residual stresses is important to prevent the catastrophic failures of the components used in the aerospace industry. The objective of this work is to predict the machining induced residual stresses with bagging, boosting, and single-based machine learning models based on the design and cutting parameters used in turning of Inconel 718 and Ti6Al4V alloys. Experimentally measured residual stress data of these two materials was compiled from the literature including the surface material of the cutting tools, cooling conditions, rake angles as well as the cutting speed, feed, and width of cut to show the robustness of the models. These variables were also grouped with different combinations to clearly show the contribution and necessity of each element. Various predictive models in machine learning (AdaBoost, Random Forest, Artificial Neural Network, K-Neighbors Regressor, Linear Regressor) were then applied to estimate the residual stresses on the machined surfaces for the classified groups using the generated data. It was found that the AdaBoost algorithm was able to predict the machining induced residual stresses with the mean absolute errors of 18.1 MPa for IN718 alloy and 31.3 MPa for Ti6Al4V by taking into account all the variables while artificial neural network provides the lowest mean absolute errors for the Ti6Al4V alloy. On the other hand, linear regression model gives poor agreement with the experimental data. All the analyses showed that AdaBoost (boosting) ensemble learning, and artificial neural network models can be used for the prediction of the machining induced residual stresses with the small datasets of the IN718 and Ti6Al4V materials.

Publisher

Bitlis Eren Universitesi Fen Bilimleri Dergisi

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3