A Comparative Study of Breast Mass Detection Using YOLOv8 Deep Learning Model in Various Data Scenarios on Multi-View Digital Mammograms

Author:

ÖZİÇ Muhammet Üsame1ORCID,YILMAZ Ayşe Sidenur1ORCID,SANDIRAZ Halil İbrahim1ORCID,ESTANTO Baıhaqı Hılmı1ORCID

Affiliation:

1. PAMUKKALE UNIVERSITY, FACULTY OF TECHNOLOGY

Abstract

Breast cancer is one of the most common types of cancer among women worldwide. It typically begins with abnormal cell growth in the breast glands or milk ducts and can spread to other tissues. Many breast cancer cases start with the presence of a mass and should be carefully examined. Masses can be monitored using X-ray-based digital mammography images, including right craniocaudal, left craniocaudal, right mediolateral oblique, and left mediolateral oblique views. In this study, automatic mass detection and localization were performed on mammography images taken from the full-field digital mammography VinDr-Mammo dataset using the YOLOv8 deep learning model. Three different scenarios were tested: raw data, data with preprocessing to crop breast regions, and data with only mass regions cropped to a 1.2x ratio. The data were divided into 80% for training and 10% each for validation and testing. The results were evaluated using performance metrics such as precision, recall, F1-score, mAP, and training graphs. At the end of the study, it is demonstrated that the YOLOv8 deep learning model provides successful results in mass detection and localization, indicating its potential use as a computer-based decision support system.

Funder

Pamukkale University the Scientific Research Coordination Unit

Publisher

Bitlis Eren Universitesi Fen Bilimleri Dergisi

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3