FEATURES OF BONE REMODELING AROUND SURFACE-MODIFIED TITANIUM AND TANTALUM IMPLANTS

Author:

Makarov Vasyli B.1,Dedukh Ninel V.2,Nikolchenko Olga A.3

Affiliation:

1. CITY CLINICAL HOSPITAL № 16, DNIPRO, UKRAINE

2. D.F. CHEBOTAREV INSTITUTE OF GERONTOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE

3. SYTENKO INSTITUTE OF SPINE AND JOINT PATHOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KHARKIV, UKRAINE

Abstract

The aim: To study the osseointegrative properties of titanium and tantalum implants with different surface structures in animal experiments. Materials and methods: The histological and morphometric study was carried out on 60 male white rats after titanium implants with different surface structures made by 3D printed technology were inserted in the distal femur bone: presented by the multilayered layers of interlacing pores of 300 microns (series 1); rough (> 2 microns) (series 2); and tantalum implants with 300 microns pores and 80% porosity (series 3) as control material. Results: On the 30 days we found statistically significant differences in the bone-implant contact rate between the 2nd experiment series (44.77 ± 1.86)% and 1st (59.91 ± 2.86)% (p=0.000047) and 3rd (53.89 ± 2.11)% (р=0.000065), on the 90 days between the 2nd experiment series (51.26 ± 2.7)% and 1st (66.84 ± 2.63)% (p=0.000187) and 3rd (70.35 ± 4.32)% (p=0.000349). There was a difference between the indices of the bone-implant volume at day 90 between the 1st (48.43 ± 2.2)% and 2nd (36.88 ± 2.56)% series (p=0.000919), between the 2nd and 3rd series (51.2 ± 3.06)% (p=0.000107). There were no significant differences between the studied indices in the 1st and 3rd series of the experiment. Conclusions: Titanium implants with multilayered interlaced pore layers of 300 microns and tantalum with 300 microns pore size and 80% porosity may be promising. Rough-surface titanium also has osseointegrative qualities, but they are lower compared to other materials.

Publisher

ALUNA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3