NITRIC OXIDE METABOLISM FEATURES UNDER CONDITIONS OF EXPERIMENTAL INFECTED RADIATION-INDUCED SKIN INJURIES DEVELOPMENT AND THEIR TREATMENT WITH PHOTODYNAMIC THERAPY

Author:

Krasnoselskyi Mykola V.1,Pushkar Elena S.1,Simonova-Pushkar Larisa I.1,Myroshnychenko Mykhailo S.2

Affiliation:

1. STATE ORGANIZATION «GRYGORIEV INSTITUTE FOR MEDICAL RADIOLOGY AND ONCOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE», KHARKIV, UKRAINE

2. KHARKIV NATIONAL MEDICAL UNIVERSITY, KHARKIV, UKRAINE

Abstract

The aim: To follow-up nitric oxide content values in rat serum at the development of Staphylococcus aureus infected radiation skin injuries and their photodynamic therapy. Materials and methods: Eighty WAG male rats were studied in an experiment. Four groups were identified for evaluation. Group 1 included unaffected intact rats (n=20). Group 2 involved rats (n=20) with a modeled radiation-induced ulcer of the skin. The rats (n=20) with a modeled radiation-induced skin ulcer followed by infecting with Staphylococcus aureus were referred to group 3. Group 4 included rats (n=20) with Staphylococcus aureus infected radiation skin ulcer exposed to photodynamic therapy. Rats of groups 1-4 were sampled for biochemical blood examination on days 7, 14, 21, 30 and 45. Total nitric oxide metabolites (nitrites and nitrates) were measured according to V.A. Metelskaya et al. method. Results: Infectious agent (Staphylococcus aureus) present in skin ulcer impairs nitric oxide metabolism in rat blood serum that manifested in decreased total nitric oxide metabolites content on day 7, followed by its increase within days 14 to 45. While photodynamic therapy exposed on the Staphylococcus aureus infected radiation skin ulcer, total nitric oxide metabolites in blood serum had increased by day 7, but days 14 to 45 level was compliant with physiological norm. Conclusions: Infecting radiation skin ulcers with Staphylococcus aureus causes impaired nitric oxide metabolism, while photodynamic therapy helps to normalize the metabolism of the above-mentioned chemical compound that can improve healing of radiation skin ulcers.

Publisher

ALUNA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3