Affiliation:
1. SUMY STATE UNIVERSITY, SUMY, UKRAINE
Abstract
The aim: To evaluate morphological changes in long tubular bones of mature rats under the influence of experimental hyperglycemia.
Materials and methods: The study was conducted on 140 nonlinear white male rats divided into two groups. The experimental group included rats that were introduced into a state of hyperglycemia by a single intraperitoneal injection of an alloxan dihydrate solution at a dose of 150 mg / kg body weight in 0.9% sodium chloride. The control group included rats that were injected with a similar volume of 0.9% sodium chloride one time intraperitoneally. The animals were taken out of the experiment on the 2nd, 30th, 60th, 90th, 120th, 150th and 180th day. Right and left femur and humerus were studied by morphometric and histological methods.
Results: Under conditions of prolonged uncontrolled hyperglycemia in mature rats, there is a slowdown in the growth rate of length and thickness of femur and humerus. This is indicated by a significant decrease in the length of bone and its diaphyses, as well as by a decrease in the cross-sectional area of the diaphysis, the width of the proximal and distal epiphyses, starting from 120 and 90 days of the experiment, respectively. The relative area of trabecular tissue, thickness of trabeculae and epiphyseal cartilage decreases in comparison with animals of the control group. The diameter of osteons and their channels increases in cortical tissue. Changes in the microarchitecture of the trabecular and cortical compartments of femur and humerus under conditions of hyperglycemia are similar and are characterized by a reduced bone mass, bone disorder progression and remodeling disorders.
Conclusions: Prolonged uncontrolled experimental hyperglycemia leads to slow growth of femur and humerus in mature rats, which is accompanied by an increase in microarchitecture disorder of the trabecular and cortical compartments, causing miniaturization of bones and, consequently, violation of their biomechanical properties and increased risk of fractures.