Estimation of lung standing size with the application of computer vision algorithms

Author:

Bunin Y.V.1ORCID,Vakulik E.V.2ORCID,Mikhaylusov R.N.3ORCID,Negoduyko V.V.1ORCID,Smelyakov K.S.2ORCID,Yasinsky O.V.1ORCID

Affiliation:

1. Military Medical Clinical Center of the Northern Region of the Ministry of Defense of Ukraine, Kharkiv, Ukraine

2. Kharkiv National University of Radio Electronics, Ministry of Education and Science of Ukraine, Kharkiv, Ukraine

3. Kharkiv Medical Academy of Postgraduate Education, Ministry of Education and Science of Ukraine, Kharkiv, Ukraine

Abstract

Evaluation of spiral computed tomography data is important to improve the diagnosis of gunshot wounds and the development of further surgical tactics. The aim of the work is to improve the results of the diagnosis of foreign bodies in the lungs by using computer vision algorithms. Image gradation correction, interval segmentation, threshold segmentation, three-dimensional wave method, principal components method are used as a computer vision device. The use of computer vision algorithm allows to clearly determine the size of the foreign body of the lung with an error of 6.8 to 7.2%, which is important for in-depth diagnosis and development of further surgical tactics. Computed vision techniques increase the detail of foreign bodies in the lungs and have significant prospects for the use of spiral computed tomography for in-depth data processing. Keywords: computer vision, spiral computed tomography, lungs, foreign bodies.

Publisher

Kharkiv National Medical University

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference9 articles.

1. Ya.L. Zarutsky, V.Ya. Biliy (Eds.). (2018). Voyenno-polova khirurhiya [Military field surgery]. Kyiv: Phoenix, 552 p. [in Ukrainian].

2. Tsymbalyuk V.I. (Eds.). (2020). Vohnepalni poranennya myakykh tkanyn (dosvid ATO/OOS) [Gunshot wounds of soft tissues (experience of anti-terrorist operation / environmental protection)]. Kharkiv: Collegium, 400 p [in Ukrainian].

3. Gonzalez R.C., Richard E. (2018). Woods Digital Image Processing, 4th edition Pearson/Prentice Hall. New York, 1168p.

4. Smelyakov K.S. (2012) Modeli i metody segmentatsii izobrazheniy obyektov neregulyarnogo vida dlya avtonomnykh sistem tekhnicheskogo zreniya [Models and methods of image segmentation of irregular objects for autonomous systems of technical vision]. Doctor’s theis’s. Kharkov [in Russian].

5. Obucheniye bez uchitelya: PCA i klasterizatsiya. Lektsii i uchebnik po «Mashinnomu obucheniyu». Kurs 7[Unsupervised Learning: PCA and Clustering. Lectures and textbook on "Machine Learning". Course 7]. intellect.icu. Retrieved from https://intellect.icu/obuchenie-bez-uchitelya-pca-i-klasterizatsiya-7928 [in Russian].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3