Abordagem Big Data-Saúde Planetária para avaliação do Programa de Combate à Dengue

Author:

Xavier FernandoORCID,Barbosa Gerson LaurindoORCID,Marques Cristiano Corrêa de AzevedoORCID,Saraiva Antonio MauroORCID

Abstract

OBJETIVO: Integrar os conceitos de Saúde Planetária e Big Data ao modelo de Donabedian, para avaliar o Programa de Combate à Dengue no estado de São Paulo. MÉTODOS: Foram adotados métodos de Ciência de Dados para integração e análise de dados relacionados à dengue, agregando o contexto aos componentes de estrutura e de resultado do modelo de Donabedian. Esses dados, considerando o período de 2010 a 2019, foram coletados de fontes como Datasus, Instituto Brasileiro de Geografia e Estatística (IBGE), WorldClim e MapBiomas, e integrados em um Data Warehouse. Para a identificação de grupos com contextos similares, foi utilizado o algoritmo K-means. Em seguida, foram realizadas análises estatísticas e visualizações espaciais dos grupos, considerando variáveis socioeconômicas, demográficas, solo, estrutura de saúde e casos de dengue. RESULTADOS: Com o uso das variáveis climáticas, o algoritmo K-means identificou quatro grupos de municípios com características similares. A comparação dos seus indicadores revelou certos padrões nos municípios com pior desempenho quanto aos resultados de casos de dengue. Embora tivessem melhores condições econômicas, eles tinham menor número médio de agentes comunitários e de unidades básicas de saúde por habitante. Dessa forma, as condições econômicas não refletiram em melhor estrutura de saúde nos três indicadores avaliados. Outra característica desses municípios é a urbanização. Os municípios de pior desempenho tinham maior taxa de população urbana e de modificações antrópicas relacionadas à urbanização. CONCLUSÕES: Por meio desta metodologia, foi possível identificar importantes deficiências nas condições para a execução do programa de combate à dengue no estado de São Paulo. A integração de diversas bases de dados e a utilização de métodos de Ciência de Dados permitiram a avaliação do programa em larga escala, considerando o contexto em que as ações são executadas. Dessa forma, a gestão pública pode utilizar as informações coletadas para planejar ações e investir de acordo com as deficiências de cada local.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Universidade de São Paulo. Agência de Bibliotecas e Coleções Digitais

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3