PRONÓSTICO ANUAL DE LA CARGA TÉRMICA RADIANTE APLICÁNDOSE INTELIGENCIA ARTIFICIAL

Author:

Borges Pedro Hurtado de MendozaORCID,Hurtado de Mendoza Zaíra Morais dos SantosORCID,Morais Pedro Hurtado de MendozaORCID

Abstract

En este estudio se desenvolvieron redes neuronales artificiales para predecir el conforto térmico animal, en función de la temperatura ambiente y la velocidad del aire para cada día del año en el calendario juliano. Los datos fueron obtenidos en el sitio del Instituto Nacional de Meteorología para una serie histórica de 30 años, coleccionada en la Estación Convencional Padre Ricardo Remetter, municipio de Santo Antonio de Leverger-MT. Para la elaboración de las redes se adoptó como variable de entrada el día del año y como variable de salida la carga térmica de radiación. El número de neuronas varió entre 2 y 15, utilizándose una y dos camadas ocultas. El ajuste de las redes se verificó por el coeficiente de determinación, error absoluto medio, porcentaje medio del error absoluto, la normalidad de los residuos y la prueba de t-Student. No hubo discrepancias entre los valores estimados por las redes y los obtenidos de la serie histórica. Finalmente se seleccionaron diez arquitecturas con adecuados índices de desempeño y las cuatro mejores se sometieron al análisis de residuos. Se concluyó que las redes neuronales del tipo perceptron con dos camadas ocultas fueron apropiadas para pronosticar la carga térmica radiante, conforme el día Juliano.          Palabras-clave: conforto térmico; red neuronal artificial; series temporales.   Annual prognostic of the radiant thermal using artificial intelligence   ABSTRACT: In this research, artificial neural networks were developed to predict the animal thermal comfort based on the room temperature and air velocity for the year day in the Julian calendar.  The data were obtained from the website of the National Institute of Meteorology for a 30-year historical series, collected at the Padre Ricardo Remetter Meteorological Station, municipality of Santo Antônio de Leverger-MT. To elaborate the networks, the day of the year was adopted as the input variable and the radiation thermal load as the output variable. The number of neurons ranged varied from 2 to 15, being used one and two hidden layers. The adjustment of the networks was verified by the determination coefficient, mean absolute error, mean percentage of the absolute error, the normality of residues and the t-Student test. The values estimated by the networks and those obtained from the historical series did not differ. Finally, ten architectures with adequate performance and efficiency indexes were selected and among them the four best were submitted to the residue analysis. It was concluded that the artificial perceptron neural networks formed by two-layer hidden were suitable for the prognosis of the radiant thermal load, as a function of Julian day. Keywords: thermal comfort; artificial network; time series.

Publisher

Nativa

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3