Mid-Breton Sediment Diversion (MBrSD) Assessment – Final Report

Author:

Wiggert Jerry,Armstrong Brandy,Cambazoglu Mustafa Kemal,Sandeep K. K.

Abstract

The purpose of this project is to provide managers at the Mississippi Department of Marine Resources (MDMR) with the scientific information needed to accurately address public concerns regarding the potential effects of the Louisiana Coastal Master Plan / Coastal Protection and Restoration Authority (CPRA) Mid-Breton Sediment Diversion (MBrSD) on the jurisdictional waters and resources of Mississippi. The stated design purpose of the MBrSD is to reconnect and re-establish the deltaic sediment deposition process between the Mississippi River and the Breton Sound Basin through a diversion that will deliver up to 75,000 cfs of sediment-laden freshwater. The report presented herein provides model-based guidance on the impact that the introduction of the MBrSD will have on salinity conditions in the Mississippi Sound (MSS) and Mississippi's jurisdictional waters that encompass oyster reef locations. Oysters are key ecosystem health indicators and economic drivers for the State of Mississippi and freshwater diversions into the western MS Sound (WMSS) have recently led to significant, unprecedented environmental impacts resulting in oyster mortality. The potential addition of a new pathway for additional freshwater to be introduced into the MSS requires careful assessment of the potential impacts that may be incurred. This project is designed to assess the impact of implementing the MBrSD on the physical environment in the WMSS. The primary aim is to understand the connectivity between MBrSD-derived freshwater input to Breton Sound on the environmental conditions impacting the oyster reefs of the WMSS near Bay St. Louis. A physical ocean modeling system based on the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) has been used to simulate the circulation and dynamics over the entire MSS with the analysis presented herein focusing particularly on the western to central MSS. This project demonstrates the importance of applying modeling-based scientific research and the capability of physical ocean circulation models for assessing aquatic ecosystem health, particularly in key oyster reef areas.

Publisher

The University of Southern Mississippi

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3