Fusion of Hand-crafted and Deep Features for Automatic Diabetic Foot Ulcer Classification
Author:
Al-Garaawi Nora,Harbi Zainab,Morris Tim
Abstract
This paper proposes to combine both the texture and deep features to build a robust diabetic foot ulcer recognition system since both features represent valuable information about the disease. The proposed system consists of three stages: feature extraction, feature fusion, and DFU classification. The feature extraction is performed by extracting the handcrafted and deep features. The feature fusion is performed by concatenating both feature vectors into a single vector. The DFU classification is performed by training a random forest classifier on the fusion vectors and the resulting classifier is used then for classification. Experimental results showed that the proposed approach provides satisfactory performance in DFU, ischaemia, and infection classification.
Publisher
Association for Information Communication Technology Education and Science (UIKTEN)
Subject
Management of Technology and Innovation,Information Systems and Management,Strategy and Management,Education,Information Systems,Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献