Algorithmic Prediction of Students On-Time Graduation from the University

Author:

Alfahid Ayman1

Affiliation:

1. Majmaah University, Industrial Area, Riyadh, Saudi Arabia

Abstract

This study develops statistical learning models to assess the probability of undergraduate students graduating within a predetermined period, utilizing admission, performance, and demographic data. The urgency of addressing student attrition is highlighted by recent data from the National Center for Education Statistics (NCES), indicating a 59% completion rate by full-time undergraduates within six years. This research leverages institutional data from a Saudi University, focusing on freshmen enrolled in the 2012-2013 and 2013-2014 academic years, to identify students at risk of dropping out, thereby enabling timely interventions. Ten algorithms, including decision trees, ensemble models, SVM, and ANN, were built and evaluated on a test set representing 33.3% of the entire dataset using precision, recall, accuracy, and Matthews correlation coefficient (MCC). The findings show that SVM and Random Forest models were the most reliable, achieving accuracies of 0.830 and 0.831 respectively, and maintaining balance in precision, recall, and MCC. Conversely, the naïve Bayes model recorded the worst performance. The comparative analysis revealed the superior performance of ensemble models over decision tree models in predicting student attrition, emphasizing the importance of model selection in developing effective early intervention strategies. In addition, our analysis revealed that academic data is a better predictor of on-time graduation than admission data, emphasizing the need for institutions to focus on continuous academic assessment data.

Publisher

Association for Information Communication Technology Education and Science (UIKTEN)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3