Abstract
Changes in environmental factors such as water quality, soil quality, and pollution factors lead to diseases in food producing plants. Identifying plant disease is a very difficult task in agriculture. Plant diseases are also mainly caused by many influences in agriculture which includes hybrid genetics, and the plant lifetime during the infection, environmental changes like climatic changes, soil, temperature, rain, wind, weather etc. The infections may be single or mixed, according to the infections the plants diseases spread. Early detection of plant diseases using recent technologies helps the plants growth. Therefore, Machine Learning techniques are used for early prediction of the diseases. This paper is used to improve the accuracy of detecting plant diseases using the prediction of the soil content in the field land. The techniques Nave Bayes (NB) and Neural Network (NN) were used in the existing system. The proposed system uses Logistic Regression method with Long Short- Term Memory (LSTM) in Neural Networks (NN) for predicting the soil content and also detects the plant diseases, improves the accuracy level in the plant growth.
Publisher
Association for Information Communication Technology Education and Science (UIKTEN)
Subject
Management of Technology and Innovation,Information Systems and Management,Strategy and Management,Education,Information Systems,Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献