Implementation of Face Recognition for Patient Identification Using the Transfer Learning Method

Author:

Adithama Stephanie Pamela1,Gunawan Rio1,Maslim Martinus1

Affiliation:

1. Universitas Atma Jaya Yogyakarta, Babarsari Street No. 43, Yogyakarta, Indonesia

Abstract

The hospital's status as a health center requires it to ensure patient safety, decrease incidents and treat patients. Identification of the patient is the primary source of patient safety difficulties. In addition to the patient's name and number, further patient-identifying components are needed to reduce this neglect. This work provides a solution in the form of biometric authentication, namely, face recognition. The convolutional neural network (CNN) approach can enable machine facial recognition. CNN is one of the deep learning techniques used to detect and identify picture objects. In this study, facial recognition was carried out using the transfer learning technique, VGGFace2 model pretraining, and SENet 50 model architecture. The dataset was collected via one-shot learning or a single sample per individual sampling. Applying the CNN model to the patient identification system yields two distinct outcomes: patient registration and verification. Registration utilizes a minimum distance of 0.35 and matches data with the complete database, whereas patient verification has a minimum distance of 0.28 and matches only the face in question. At the time of patient registration, the accuracy was between 90% and 100%. However, at the time of patient verification, the accuracy was 100%.

Publisher

Association for Information Communication Technology Education and Science (UIKTEN)

Subject

Management of Technology and Innovation,Information Systems and Management,Strategy and Management,Education,Information Systems,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3