Medical Image Registration at Pap Smear for Early Identification of Cervical Cancer

Author:

Merlina Nita1,Noersasongko Edi2,Andono Pulung Nurtantio2,Soeleman M Arief2,Riana Dwiza1,Na`am Jufriadif1

Affiliation:

1. Universitas Nusa Mandiri, Jakarta, Indonesia

2. Universitas Dian Nuswantoro, Jakarta, Indonesia

Abstract

The complexity of the cell structure and high overlap causes poor image contrast. Complex imaging factors in lighting differences, dye concentrations, and other variables such as drying air, excess blood, mucus, bacteria, or inflammation can make automatic visual interpretation more difficult. This study proposes an approach model by combining basic image processing techniques in deep learning for segmentation of the nucleus in the Overlap Cell Image of Pap Smear of Cervical Cancer patients. The purpose of this research is to segment by increasing the identification accuracy of Pap smear images on RepomedUNM public data. The results have the best performance as seen in the MSE value, the lowest RMSE value is 0.2024253 and the lowest PSNR is 0.04009707 and the highest PSNR is 65.3826018 dB. So, this study can be used as a reference in identifying the Cervical Cancer Nucleus as Medical Image Registration (MIR) patients.

Publisher

Association for Information Communication Technology Education and Science (UIKTEN)

Subject

Management of Technology and Innovation,Information Systems and Management,Strategy and Management,Education,Information Systems,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3