Abstract
The purpose of this research is to evaluate several popular machine learning algorithms for credit scoring for peer to peer lending. The dataset to fit the models is extracted from the official site of Lending Club. Several models have been implemented, including single classifiers (logistic regression, decision tree, multilayer perceptron), homogeneous ensembles (XGBoost, GBM, Random Forest) and heterogeneous ensemble classifiers like Stacked Ensembles. Results show that ensemble classifiers outperform single ones with Stacked Ensemble and XGBoost being the leaders.
Publisher
Association for Information Communication Technology Education and Science (UIKTEN)
Subject
Management of Technology and Innovation,Information Systems and Management,Strategy and Management,Education,Information Systems,Computer Science (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献