A Real-Time American Sign Language Recognition System using Convolutional Neural Network for Real Datasets

Author:

Amer Kadhim Rasha,Khamees Muntadher

Abstract

In this paper, a real-time ASL recognition system was built with a ConvNet algorithm using real colouring images from a PC camera. The model is the first ASL recognition model to categorize a total of 26 letters, including (J & Z), with two new classes for space and delete, which was explored with new datasets. It was built to contain a wide diversity of attributes like different lightings, skin tones, backgrounds, and a wide variety of situations. The experimental results achieved a high accuracy of about 98.53% for the training and 98.84% for the validation. As well, the system displayed a high accuracy for all the datasets when new test data, which had not been used in the training, were introduced.

Publisher

Association for Information Communication Technology Education and Science (UIKTEN)

Subject

Management of Technology and Innovation,Information Systems and Management,Strategy and Management,Education,Information Systems,Computer Science (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Communication with Gesture Recognition for People with Disabilities;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04

2. Unlocking the Power of Al: A Real-Time Translation of Sign Language to Text;Communications in Computer and Information Science;2023-12-03

3. Empowering Communication: Harnessing CNN and Mediapipe for Sign Language Interpretation;2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET);2023-11-23

4. Performance Evaluation of Sign Recognition Protocol Using Hand Gesture Mechanism;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

5. Sign Language Recognition Using OpenCV and Convolutional Neural Networks;2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3