Effect of deposition of carbon deposits on charge flow in EGR valve in CI engine

Author:

Wozniak MarekORCID,Siczek KrzysztofORCID,Zakrzewski Sergiusz,Just PawelORCID,Ozuna GustavoORCID,Onescu ConstantinORCID

Abstract

The exhaust gas recirculation (EGR) valve regulates the exhaust gas flow between the engine exhaust manifold and the inlet one. This allows the inlet air to warm up, improving fuel evaporation and reducing the combustion temperature of the charge. Such a valve reduces the number of harmful substances in the exhaust gas. The valve sticks when too much sediment builds on the walls of the exhaust system, especially during driving in urban conditions or when leaks in the vacuum or exhaust pipes occur. A faulty valve causes the engine to run unevenly at idle speed and under light loads. The defective EGR valve weakens the inlet manifold capacity, increases combustion, clogging of the particulate filter, damage to the lambda probe. A blocked EGR valve may lead to engine immobilization as a result of the operation of its computerized control system. A model of the EGR valve of a selected diesel engine was developed to determine the velocity distribution of the load flowing in it for different values of the degree of valve opening and the volume of deposits on the valve walls. The volume of accumulated carbon deposits on the walls of the EGR valve was measured using a real engine. Based on the recorded mileage of the vehicle, the assumed average speed of the car, and the driving style of the driver, the intensity of deposition of carbon particles on the walls was estimated.

Publisher

Polish Scientific Society of Combustion Engines

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Model-Free Controller Based on RBFNN for EGRV System;2023 IEEE International Conference on Real-time Computing and Robotics (RCAR);2023-07-17

2. Self-Cleaning EGR Valve for Current and Future Diesel Applications;SAE Technical Paper Series;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3