Abstract
In the present study, an innovative design of the urea-selective catalytic reduction (SCR) system without conventional mixing elements was developed. The aim was to obtain a high degree of urea decomposition, and uniform ammonia distribution at the inlet to the catalyst, while minimising the liquid film deposition and keeping the compact design. The concept of the design was based on creating high turbulences and elongating the flow paths of the droplets. The design was verified through a series of numerical simulations based on the Reynolds-averaged Navier–Stokes (RANS) approach and a discrete droplet model (DDM) spray representation. The analysis included various operating conditions as well as subcooled and superheated sprays. A uniform ammonia distribution was achieved regardless of the operating points and spray properties. Additionally, in the case of the flash-boiling injection, a further reduction of the wall film was observed.
Publisher
Polish Scientific Society of Combustion Engines
Reference30 articles.
1. AVL LIST GmbH FIRE TM 2019.2 Wall Film Module User Guide. Wall Film module. 2019.
2. BIRKHOLD, F. Selektive katalytische Reduktion von Stickoxiden in Kraftfahrzeugen: Untersuchung der Einspritzung von Harnstoffwasserlösung. 2007, 15(6), 893–900.
3. Experimental Analysis of SCR Spray Evolution and Sizing in High-Temperature and Flash Boiling Conditions
4. BROCKLEY GROUP LTD. Safety data sheet BlueCat AdBlue. 2014.
5. Urea-SCR system optimization with various combinations of mixer types and decomposition pipe lengths
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献