An overview of cold start emissions from direct injection spark-ignition and compression ignition engines of light duty vehicles at low ambient temperatures

Author:

BIELACZYC Piotr,SZCZOTKA Andrzej,WOODBURN Joseph

Abstract

Spark-ignition (SI) engines are highly susceptible to excess emissions when started at low ambient temperatures, a phenomenon which has been widely discussed in the literature. Direct injection diesel engines feature a markedly different fuelling and combustion strategy, and as such their emissions behaviour is somewhat different from gasoline engines. The excess emissions of diesel engines at low ambient temperatures should also differ. The aim of this study was to compare excess emissions of gaseous and solid pollutants over a legislative driving cycle (the New European Driving Cycle, NEDC) following cold start at a low ambient temperature for both engine types. This paper examines emissions at low ambient temperatures with a special focus on cold start; emissions are also compared to start-up at a higher ambient temperature (24 °C). The causes of excess emissions andfuel consumption are briefly discussed. A series of tests were performed on European Euro 5 passenger cars on a chassis dynamometer within an advanced climate-controlled test laboratory at BOSMAL Automotive Research and Development Institute, Poland. Emissions data obtained over the Urban Driving Cycle by testing at 24 °C and at -7 °C, are presentedfor a selection ofmodern Euro 5 gasoline and diesel vehicles representative of the European passenger carfleet. A full modal emissions analysis was also conducted at 24 °C and at -7 °C over the NEDC. Emissions andfuel consumption were substantially higher at -7 °C than at 24 °C.

Publisher

Polish Scientific Society of Combustion Engines

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3