Effects of substance P on growth of fibroblast-like cells derived from bile duct: an in vitro cell culture study

Author:

Yuanhu Tian,Guangyun Yang,Xiaoqing Zhang,Wei Shen,Jiahong Dong,Zhi Xu

Abstract

Background The possible role of substance P (SP) during wound healing has been the primary research focus in recent years, but its effect on the healing process after bile duct injury is little understood. This study aimed to investigate the effects of SP on growth of fibroblast-like cells derived from rabbit bile duct. Methods Fibroblast-like cells derived from rabbit bile duct were identified and divided randomly into control and experimental groups. SP-treated cells at different concentrations of 10-9-10-5 mol/L and control group were incubated, respectively, for 48 hours. After incubating, the effects of SP on cell proliferation were assessed by cell counts and MTT test. Apoptosis rate (AR) of cells was measured by flow cytometry. Results Cultured rabbit bile duct cells were fibroblast-like in morphology, and these cells were stained positively for vimentin and negatively for desmin. After SP was added to nonconfluent cells for 48 hours, cell numbers were significantly increased in experimental groups than in controls (P <0.05). The maximum stimulation of cell proliferation was achieved at SP of 10-5 mol/L. Bile duct fibroblast-like cells in the SP group showed a higher proliferating activity and lower AR than those in the control group or in the SP + Spantide group (P <0.05). Spantide partly inhibited the effects of SP on fibroblastlike cells. Examination under transmission electron microscopy revealed rough endoplasmic reticulum and prominent Golgi complexes after SP treatment. Conclusions SP has a growth regulatory property on cultivated bile duct fibroblast-like cells in vitro, suggesting that SP may involve in wound healing after bile duct injury by promoting wound fibroblast proliferation and inhibiting apoptosis and participate in pathological scar formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3