A novel rat model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming

Author:

Zhang Weihua,Zhang Yanbo,Liu Donghai,Zhu Yaobin,Qiao Chenhui,Wang Jiaxiang,Xu Yulin,Liu Yang,Li Bin,Yang Yao

Abstract

Background Large animal cardiopulmonary bypass (CPB) models are expensive, and prevent assessment of neurocognitive function, and difficulties with long-term recovery. The purpose of this study was to establish a novel rat model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming. Methods Twenty adult male Sprague-Dawley rats weighing 450–560 g were randomized to CPB with deep hypothermic circulatory arrest (DHCA) and control groups, with 10 rats each. The experimental protocols, including blood and crystalloid fluid administration, anesthesia, orotracheal intubation, ventilation, cannulation, and heparinization were identical in both groups. After inducing cardiac arrest, the circuit was turned off and rats were left in a DHCA state for 15 minutes. Rats were rewarmed to 34°C to 35°C over a period of 36 to 42 minutes using CPB-assisted rewarming, a heating blanket, and a heating lamp along with administration of 0.1 mEq of sodium bicarbonate and 0.14 mEq of calcium chloride. The remaining priming volume was reinfused and animals were weaned from CPB. Results All CPB with DHCA processes were successfully achieved. Blood gas analysis and hemodynamic parameters were in the normal range. The vital signs of all rats were stable. Conclusions Our CPB circuit has several novel features, including a small priming volume, active cooling/rewarming processes, vacuum-assisted venous drainage, peripheral cannulation without thoracotomy or sternotomy, and an accurate means of monitoring peripheral tissue oxygenation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3