Reimagining the Journal Editorial Process: An AI-Augmented Versus an AI-Driven Future

Author:

Shmueli Galit, ,Ray Soumya,

Abstract

The editorial process at our leading information systems journals has been pivotal in shaping and growing our field. But this process has grown long in the tooth and is increasingly frustrating and challenging its various stakeholders: editors, reviewers, and authors. The sudden and explosive spread of AI tools, including advances in language models, make them a tempting fit in our efforts to ease and advance the editorial process. But we must carefully consider how the goals and methods of AI tools fit with the core purpose of the editorial process. We present a thought experiment exploring the implications of two distinct futures for the information systems powering today’s journal editorial process: an AI-augmented and an AI-driven one. The AI-augmented scenario envisions systems providing algorithmic predictions and recommendations to enhance human decision-making, offering enhanced efficiency while maintaining human judgment and accountability. However, it also requires debate over algorithm transparency, appropriate machine learning methods, and data privacy and security. The AI-driven scenario, meanwhile, imagines a fully autonomous and iterative AI. While potentially even more efficient, this future risks failing to align with academic values and norms, perpetuating data biases, and neglecting the important social bonds and community practices embedded in and strengthened by the human-led editorial process. We consider and contrast the two scenarios in terms of their usefulness and dangers to authors, reviewers, editors, and publishers. We conclude by cautioning against the lure of an AI-driven, metric-focused approach, advocating instead for a future where AI serves as a tool to augment human capacity and strengthen the quality of academic discourse. But more broadly, this thought experiment allows us to distill what the editorial process is about: the building of a premier research community instead of chasing metrics and efficiency. It is up to us to guard these values.

Publisher

Association for Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3