The Potency of Culture-Expanded Nasal Septum Chondrocytes for Tissue Engineering of Cartilage

Author:

van Osch Gerjo J.V.M.1,Marijnissen Willem J.C.M.2,van der Veen Simone W.1,Verwoerd-Verhoef Henriette L.1

Affiliation:

1. Departments of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, The Netherlands

2. Departments of Orthopaedics, Erasmus University Medical Center, Rotterdam, The Netherlands

Abstract

Tissue engineering techniques to create extra autologous cartilage for reconstructive surgery receive more and more scientific and industrial attention. The objective of this experimental study was to assess the use of in vitro multiplied chondrocytes of the nasal septum for generation of cartilage grafts using tissue engineering techniques. Cells isolated from a biopsy of septal cartilage of rabbits and humans were expanded in culture to get a sufficient number of cells to engineer a cartilage graft. The drawback of the expansion procedure is that the cells lose their cartilaginous phenotype (dedifferentiation). We studied a method to reverse the dedifferentiation of expanded cells to stimulate them to produce cartilage matrix of good qualm. Rabbit chondrocytes showed reversion of dedifferentiation (redifferentiation) when fetal calf serum was replaced by the growth factors IGF1 and TGFβ2. This was expressed by increased glycosaminoglycan synthesis and increased numbers of collagen type II-producing cells. The redifferentiation capacity of septal cartilage cells of young rabbits was higher than that of adult rabbits. In human chondrocytes from the nasal septum redifferentiation could also be induced by replacement of serum with IGF1 and TGFβ2. This method, however, was less efficient than in rabbits. Chondrocytes of older patients (>40 years old) were no longer sensitive to the growth factor treatment. In conclusion, our study demonstrates a method to regain cartilage phenotype in multiplied cells of nasal septum cartilage needed for tissue engineering of new cartilage. These results are promising for this technique to generate cartilage grafts for facial plastic surgery of the nasal septum.

Publisher

SAGE Publications

Subject

Otorhinolaryngology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3