Assessments of Nasal Bone Fracture Effects on Nasal Airflow: A Computational Fluid Dynamics Study

Author:

Chen Xiao Bing1,Lee Heow Pueh1,Chong Vincent Fook Hin2,Wang De Yun3

Affiliation:

1. Departments of Mechanical Engineering, National University of Singapore, Singapore

2. Diagnostic Radiology, National University of Singapore, Singapore

3. Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Abstract

Background The aim of this study was to evaluate effects of nasal bone fractures on nasal aerodynamic flow patterns using computational fluid dynamics (CFD) simulations. Methods A three-dimensional model of nasal cavity with a nasal bone fracture was constructed from computerized tomography (CT) scans of a patient with use of software Mimics 13.0 (The Materilize Group, Leuven, Belgium). CFD simulations were performed using Fluent 6.3 (ANSYS, Inc., Canonsburg, PA) with a turbulent flow model. Numerical results were presented with velocity, streamline, and pressure contour distributions in left and right nasal cavities and were compared with those of a healthy one. Possible outcomes on functional performances or patencies of the nose were also examined and discussed. Results For the nose with a nasal bone fracture, distributions of velocity contours showed there was more airflow in the right nasal cavity than in the left one, especially for inspiration status. In the left cavity, the airflow was redirected irregularly and there were also more circulations with larger sizes, higher pressure jumps, and greater wall shear stresses. Flow partitioning in the right and left cavities was noticeable with a larger nasal resistance compared with the healthy one. When the inspirational flow rate was increased, pressure jump from the nostril to the nasopharynx increased faster. Conclusion The aerodynamic flow was redistributed greatly for the nose with a nasal bone fracture compared with the healthy one, which might affect local normal nasal functions. Such physical assessments of nasal airflow based on a model from the patients’ CT scans may help clinicians determine the best treatment in advance.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3