Septal Deviation and Nasal Resistance: An Investigation using Virtual Surgery and Computational Fluid Dynamics

Author:

Garcia Guilherme J.M.1,Rhee John S.2,Senior Brent A.3,Kimbell Julia S.13

Affiliation:

1. The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina

2. Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin

3. Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina

Abstract

Background Septal deviation is an extremely common anatomic variation in healthy adults. However, there are no standard criteria to determine when a deviated septum is clinically relevant. Presently, selection of patients for septoplasty is based on mostly clinical examination, which is prone to observer bias and may lead to unsuccessful treatment. The objective of this article is twofold. First, we investigate whether the location of a septal deviation within the nasal passages affects nasal resistance. Second, we test whether computer simulations are consistent with rhinomanometry studies in predicting that anterior septal deviations increase nasal resistance more than posterior deviations. Methods A three-dimensional computational model of a healthy nose was created from computed tomography scans. Geometry-deforming software was used to produce models with septal deviations. Computational fluid dynamics techniques were used to simulate nasal airflow and compute nasal resistance. Results Our results revealed that the posterior nasal cavity can accommodate significant septal deviations without a substantial increase in airway resistance. In contrast, a deviation in the nasal valve region more than doubled nasal resistance. These findings are in good agreement with the rhinomanometry literature and with the observation that patients with anterior septal deviations benefit the most from septoplasty. Conclusions In the model, anterior septal deviations increased nasal resistance more than posterior deviations. This suggests, in agreement with the literature, that other causes of nasal obstruction (dysfunction of the nasal valve, allergy, etc. ) should be carefully considered in patients with posterior septal deviations because such deviations may not affect nasal resistance. This study illustrates how computational modeling and virtual manipulation of the nasal geometry are useful to investigate nasal physiology.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3